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Abstract

The development of air quality management (AQM) strategies provides opportunities to improve 

public health and reduce health inequalities. This study evaluates health and inequality impacts of 

alternate SO2 control strategies in Detroit, MI, a designated non-attainment area. Control 

alternatives include uniform reductions across sources, ranking approaches based on total 

emissions and health impacts per ton of pollutant emitted, and optimizations that meet 

concentration and health goals. Using dispersion modeling and quantitative health impact 

assessment (HIA), these strategies are evaluated in terms of ambient concentrations, health 

impacts, and the inequality in health risks. The health burden attributable to SO2 emissions in 

Detroit falls primarily among children and includes 70 hospitalizations and 6,000 asthma-related 

respiratory symptom-days annually, equivalent to 7 disability-adjusted life years (DALYs). The 

health burden disproportionately falls on Hispanic/Latino residents, residents with less than a high 

school diploma, and foreign-born residents. Control strategies that target smaller facilities near 

exposed populations provide the greatest benefit in terms of the overall health burden reductions 

and the inequality of attributable health risk; conventional strategies that target the largest emission 

sources can increase inequality and provide only modest health benefits. The assessment is novel 

in using spatial analyses that account for urban scale gradients in exposure, demographics, 

vulnerability, and population health. We show that quantitative HIA methods can be used to 

develop AQM strategies that simultaneously meet environmental, public health, and environmental 

justice goals, advancing AQM beyond its current compliance-oriented focus.
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1. Introduction

1.1 Background

Air quality management (AQM) is an iterative process that involves setting standards for air 

quality, designing and implementing control strategies to achieve these standards, and then 

assessing air quality status and progress towards these standards (NRC, 2004). In the USA, 

states and the federal government use the National Ambient Air Quality Standards 

(NAAQS), which are intended to be protective of public health with an adequate margin of 

safety for sensitive subpopulations (NRC, 2004). Currently, AQM focuses on compliance 

with these standards. However, this may not provide the desired level of public health 

protection for several reasons. First, NAAQS compliance is based on concentrations 

measured at a limited number of fixed monitoring stations, which may not reflect the spatial 

variation in concentrations and the true exposure of the population (Levy and Hanna, 2011; 

Matte et al., 2013). Second, the NAAQS may fall short of protecting individuals and groups 

who are susceptible, that is, at increased risk of adverse health effects at a particular 

concentration due to characteristics that increase their sensitivity, e.g., respiratory disease, as 

well as vulnerable, that is, at greater likelihood of higher exposure due to factors that reduce 

the ability to avoid or mitigate high exposures, e.g., low socioeconomic status (SES) and 

residence location (O’Neill et al., 2012; Sacks et al., 2011). Vulnerability and susceptibility 

vary spatially, and subpopulations having both high sensitivity and high exposure are more 

likely to experience adverse health impacts than the general population. Third, it is 

challenging or perhaps impossible to select a sufficiently protective regulatory standard 

when no effect threshold (i.e., a level below which health effects do not occur) has been 

identified. Ambient air quality standards are informed by integrated science assessments 

(previously called “criteria documents”) and staff papers which summarize and synthesize 

the exposure, toxicological, and epidemiological literature, but ultimately, the designation of 

the standard is a policy decision made by the US EPA Administrator (NRC, 2004). 

Additional concerns for AQM strategies based on NAAQS compliance include the single 

pollutant approach (i.e., the exclusion of cumulative impacts), delays in attaining compliance 

(in part due to the need for multiple years of monitoring data), and the technical, 

administrative, and legal steps involved in establishing and implementing policies to attain 

the NAAQS.

Health impact assessment (HIA) uses a comprehensive approach to evaluate health impacts 

that arise from programs, projects, or policies (Bhatia et al., 2014; Dannenberg, 2016). HIA 

is becoming an accepted approach for estimating health impacts of air quality and the 

benefits of AQM options, and HIA tools have been developed to facilitate HIA analyses 

(Anenberg et al., 2015). HIAs for AQM can incorporate information from air quality 

models, ambient air monitoring, population demographics, environmental epidemiology, and 

other sources. In a “full” HIA, quantitative assessments estimate the morbidity and mortality 

attributable to pollutant exposure (US EPA, 2010a), and complementary qualitative analyses 

evaluate the benefits and adverse impacts that are not included in the quantitative 

assessment. HIAs have been used to examine potential impacts from power plants and other 

emission sources at regional and national levels (e.g., Buonocore et al., 2014; Fann et al., 

2009). Impacts of specific pollution sources at local or urban levels can be examined given 
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appropriate input data, e.g., baseline health outcome incidence rates and exposure estimates 

(Hubbell et al., 2009).

Inequality metrics quantify the distribution of health impacts or benefits across space (e.g., 

census blocks) or groups (e.g., minority populations). These metrics can indicate how an 

AQM option affects the outcome distribution (Maguire and Sheriff, 2011), key information 

for environmental justice analyses that evaluate whether certain groups experience 

disproportionate adverse effects from environmental hazards (Brulle and Pellow, 2006). 

Preferred indicators or metrics for environmental justice analyses have been identified (Levy 

et al., 2006). For example, the Atkinson Index (AI), originally developed as an income 

inequality parameter, evaluates inequality across individuals or units (e.g., census blocks). It 

includes a subjective “inequality aversion” parameter, which accounts for societal attitudes 

towards inequality, and it can be decomposed to examine differences between groups, e.g., 

race and ethnicity groups (Levy et al., 2006). Larger AI values indicate greater inequality in 

the distribution of risk. Another inequality metric, the concentration index (CI), examines 

the distribution of health burdens across population subgroups ranked by social status 

(O’Donnell et al., 2008). The CI plots the cumulative distribution of health risks against the 

cumulative ranking of census blocks ordered by the selected demographic or SES variable, 

and is calculated as the area under the 1:1 line minus the area under the concentration curve. 

Negative CI values indicate that less socially advantaged groups carry disproportionately 

heavier health burdens. This metric has been used to evaluate a variety of environmental 

hazards, e.g., PM2.5, ozone, traffic density, and proximity to toxic release sites (Cushing et 

al., 2015; Sadd et al., 2011; Su et al., 2009, 2012). Despite their usefulness in quantifying 

environmental inequalities, inequality metrics are not routinely used in regulatory or other 

analyses (Harper et al., 2013).

Determining whether an AQM strategy will attain ambient standards, minimize health 

impacts and reduce inequalities requires combining health impact metrics with inequality 

metrics and possibly other information. For example, a study examining power plant 

emissions in the U.S. found that controlling sources with the largest health impacts per unit 

emissions conferred the greatest health benefits and inequality reductions (Levy et al., 2007). 

A study investigating controls for PM2.5 and ozone precursors in Detroit, MI showed that a 

multipollutant approach achieved better health and inequality benefits compared to single 

pollutant strategies (Fann et al., 2011; Wesson et al., 2010). These examples combined 

quantitative health impact and inequality metrics either using large study areas with 

coarsely-resolved exposure and health data (Levy et al., 2007) or pollutants with low spatial 

variability, e.g., ozone and PM2.5 (Fann et al., 2011; Wesson et al., 2010). AQM strategies 

evaluating health impacts and inequalities have not been applied to pollutants that have 

significant spatial-variability at the intra-urban scale, despite their considerable promise to 

benefit populations and their relevance to many environmental justice applications.

1.2 Objectives

This study investigates emission control strategies aimed at reducing the burden of disease 

and health burden inequalities. Alternative strategies are formulated and evaluated in terms 

of ambient concentrations, total health benefits, and the distribution of health impacts across 
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an urban population. We quantify the potential trade-offs between emission reductions, 

health impacts, and inequality, and demonstrate how health burden and inequality metrics 

might be used at an urban scale and in a regulatory context.

2. Methods

HIA methods are used to estimate the burden of disease attributable to SO2 exposures in 

southeast Michigan. Two sets of emission control strategies are considered. The first reduces 

current (ongoing) emissions at major sources in the area, and thus represents actual or 

typical exposure to SO2 in the study area. The second examines alternatives to a proposed 

state implementation plan (SIP) that follows EPA guidance, which starts with the maximum 

allowable emissions based on existing and revised permits (US EPA, 2005); this analysis 

highlights issues related to using the maximum allowable emissions in SIP development. 

The study area includes Detroit and “downriver” cities, and includes the portion of Wayne 

County designated as non-attainment for the 2010 SO2 ambient air quality standard (MDEQ, 

2016). The control strategy options, evaluative metrics, and study area are described below. 

Additional information regarding the HIA methods and data sources is provided in the 

Supplemental Materials.

2.1 SO2 emissions inventory and estimates of population exposures

SO2 emission estimates are derived from 2010 to 2014 stack-level data retrieved from the 

Michigan Air Emissions Reporting System (MAERS; MDEQ, 2001). For major sources in 

the region (i.e., sources emitting more than 100 tons of SO2 per year), emissions are 

modeled at the stack level; for other sources, facility-level emissions are used. Eight major 

SO2 sources fall within the SO2 non-attainment area (Figure 1): three coal-powered 

electrical generating facilities (DTE Trenton Channel, DTE River Rouge, Dearborn 

Industrial Generation); two large steel facilities (US Steel at Zug Island and Ecorse, 

Severstal/AK Steel); two lime and coke facilities (EES Coke, Carmeuse Lime); and an oil 

refinery (Marathon). None of these facilities use add-on control technologies for SO2 

(MDEQ, 2016). The analysis also includes 126 other point source facilities in the area, 

including the DTE Monroe power plant. This facility, located approximately 60 km south of 

Detroit, is the state’s largest coal-fired power plant (3,300 MW) and recently installed 

scrubbers to significantly reduce SO2 emissions. These nine sources account for 92% of SO2 

point source emissions in southeast Michigan. Because reported emissions fluctuate 

annually, we averaged emissions for the 2010 to 2014 period. In cases, only the more recent 

data were used to account for known changes over time. These represent current or “base 

case” emissions.

Population-level exposures are estimated using the Framework for Rapid Emissions 

Scenario and Health impact Estimation (FRESH-EST), a software package that allows rapid 

assessment of exposures and health impacts due to point source emissions for a given areal 

unit, e.g., census blocks (Milando et al., 2016). Briefly, ambient SO2 concentrations 

attributable to point source emissions are estimated at a set of discrete locations 

(“receptors”) using a source-receptor or “transfer coefficient” matrix developed using the 

AERMOD dispersion model (Cimorelli et al., 2005), local meteorology, and an adaptive 

Martenies et al. Page 4

Air Qual Atmos Health. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



receptor grid (200 m spacing near major sources, and 1 km spacing elsewhere). We 

interpolate from the receptor grid to a 25 m raster using inverse-distance weighting, and use 

the average of raster cells overlapping census block polygons to estimate exposure 

concentrations. FRESH-EST includes an optimization module to minimize point source 

emissions to attain specified receptor concentrations or maximize health benefits, subject to 

other constraints.

Census blocks are used as the spatial unit of analysis, balancing the need for accurate 

exposure assessment with the available population and baseline health data (Batterman et al., 

2014). Time-activity patterns that account for working and living in areas with different 

pollutant levels are not considered. Although this may lead to exposure measurement errors 

and possible biases in health impact estimates, the epidemiological studies underlying the 

concentration-response coefficients mostly rely on area monitors and residence locations to 

assign exposures.

2.2 SO2 emissions control alternatives

2.2.1 Strategies to reduce emissions of SO2—Baseline emissions from point sources 

are used to represent “current” exposures and health impacts attributable to these sources 

under current operating conditions; this is the base case strategy designated “S0”. Five types 

of strategies are considered (Table 1). Each is evaluated at six levels that represent 15, 30, 

45, 60, 75, and 90% reductions in aggregate SO2 emissions from baseline levels. Individual 

major sources can reduce emissions by up to 90%, the maximum control attainable with 

add-on technologies, e.g., flue gas desulfurization (Srivastava and Jozewicz, 2001). We 

focus on reducing emissions at the eight major sources located within the non-attainment 

area.

The simplest approaches apply uniform reductions across all sources (strategy S1) or 

controls at the largest facilities first (S2) to meet reduction goals. The “health impact 

ranking” strategy (S3) ranks sources by the health impacts per ton of SO2 emitted, and 

imposes reductions on the highest ranked sources first until the emissions target is met (Levy 

et al., 2007). Strategies S4 and S5 minimize receptor concentrations and maximize health 

benefits (i.e., minimizing disability-adjusted life years; DALYs), respectively, using the 

FRESH-EST optimization module with constraints that limit emissions at each source 

(allowing between 10 and 100% of baseline emissions) and that attain the emissions target 

(summed across major sources). For all of these strategies, emissions at DTE Monroe and 

the 125 minor facilities remain at baseline.

2.2.2 SIP base case, control strategy, and optimized alternatives—The SIP 

strategy proposed by Michigan Department of Environmental Quality (MDEQ) started with 

the maximum allowable SO2 emissions and considered SO2 monitoring data, dispersion 

modeling, and Reasonably Achievable Control Technology (RACT) analyses (MDEQ, 

2016). It identified five culpable sources after conducting a hotspot analysis (DTE River 

Rouge, DTE Trenton Channel, US Steel, EES Coke, Carmeuse Lime), and called for 

emissions reductions at the DTE plants and US Steel, the shutdown of specific boilers at the 

DTE plants, and the construction of a taller stack at Carmeuse Lime; no changes were 
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required at EES Coke (MDEQ, 2016). In the “SIP maximum allowable case” (strategy S6), 

we use the existing maximum allowable emissions at major sources (MDEQ, 2016, pp. 15–

16) and current emissions at other sources (as described in Section 2.1). The “SIP control 

strategy” (S7) implements the MDEQ SIP strategy (MDEQ, 2016) with other emissions 

unchanged from S6.

Two additional alternatives that attain the overall SO2 reduction specified in the SIP (26,418 

tons per year) are evaluated. Strategy S8 minimizes the maximum receptor concentration, 

and strategy S9 maximizes health benefit. Both allow emissions reductions at only the five 

culpable sources identified by MDEQ; stack heights are unchanged. For strategies S7-S9, 

the SIP maximum allowable case (S6) serves as the comparison (base case) strategy.

2.3 Health impact assessment

Outcomes associated with SO2 exposure include hospitalizations for respiratory diseases, 

asthma-related emergency department visits, and asthma symptom-days among children. 

FRESH-EST uses health impact functions to estimate the numbers of these outcomes 

attributable to SO2, similar to those in other HIA tools (e.g., US EPA, 2015). Only health 

outcomes for which a causal relationship with SO2 exposure has been established are 

considered, as determined by US EPA (US EPA, 2008, 2016a), which may under-predict the 

true health burden. We assume a no-threshold concentration-response (CR) relationship 

between SO2 exposures and health effects, consistent with US EPA conclusions regarding 

the lack of evidence of a population-level exposure threshold (US EPA, 2008, 2016a). 

Health impacts are calculated using 24-hr average SO2 concentrations, which is consistent 

with the epidemiological studies from which CR coefficients are drawn. Uncertainty in the 

health impact estimates, represented as a 95% confidence interval, is estimated using the 

uncertainty around the CR coefficient, which has been shown to account for substantial 

portion of the total uncertainty in quantitative health impact estimates (Chart-asa and 

Gibson, 2015).

2.4 Evaluative metrics

Control strategies are evaluated using concentrations, health impact, and inequality metrics. 

For the concentration metric, we used the fourth highest 1-hour daily maximum SO2 

concentration at non-fenceline receptors. This is similar but not identical to the form of the 

SO2 NAAQS definition, which uses the 3-year average of the annual fourth highest 1-hour 

daily maximum concentrations (US EPA, 2010b). Health impacts are reported as the number 

of attributable cases and DALYs, which aggregate the health outcomes into a single 

summary metric based on time lost to poor health (Murray, 1994). DALYs provide a 

measure of the total health burden, including hospitalizations and asthma exacerbations in 

older adults and children, respectively, by more heavily weighting more severe but less 

frequent outcomes, e.g., hospitalizations, than more frequent but less severe outcomes, e.g., 

days with asthma symptoms. Disability weights and durations for DALYs are drawn from 

existing studies (CDC, 2012; de Hollander et al., 1999; Murray, 1994; Ostro, 1987). 

Attributable cases are monetized using values (in 2010$ adjusted to a 2020 income level) 

reported by the US EPA in the most recent Regulatory Impact Assessment for fine 

particulate matter (US EPA, 2012)
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Inequality of the health burden is examined using the AI and the CI. For the AI, the 

inequality parameter is set to 0.75 following prior AQM work (Fann et al., 2011). For the CI, 

the required spatially-resolved demographic and SES data to rank the vulnerability of census 

blocks uses seven (block group level) variables from the 2014 5-year American Community 

Survey (Supplemental Figure 2): percentage of the population that is non-white, Hispanic or 

Latino, persons of color, foreign born, or with less than a high school diploma; median 

household income (inflation-adjusted 2014 dollars); and percentage of households with past 

year income below the poverty level (US Census Bureau, 2014).

The inequality of the health burden is based on the risk of SO2-attributable DALYs. The use 

of attributable (rather than total) DALYs helps assess whether the SO2 reduction strategies 

result in “fair treatment” of all population subgroups, i.e., that each subgroup receives a 

benefit as a result of AQM actions (US EPA, 2016b). The mean estimate of DALYs 

generated by the health impact functions is used to assess health impact and inequality 

metrics.

2.5 Description of the study area and population

The study area includes much of Detroit and Wayne County in southeast Michigan, 

including the designated SO2 non-attainment area (MDEQ, 2016) (Figure 1). A total of 

1,136,696 people lives in the study area (US Census Bureau, 2014). Air pollution has been 

and remains an important environmental health concern for southeast Michigan residents. 

Due to its industrial legacy, Detroit contains many large SO2 sources. Detroit has 

experienced substantial outmigration, and residents remaining may be vulnerable to adverse 

health effects of air pollutant exposures. The population is mostly minority (83% non-

Hispanic Black, 7% Latino or Hispanic), and 39% live below the poverty line (US Census 

Bureau, 2015). Access to health care is an important challenge, e.g., 25% of Detroit adults 

report not having seen a doctor at least once in the last year for costs reasons, a rate 

significantly higher than the state average of 15% (MDHHS, 2015). Health disparities are 

significant, particularly for diseases associated with air pollution, e.g., rates of asthma 

hospitalizations and deaths in Detroit exceed state averages by 3.5 and 2.4 times, 

respectively (DeGuire et al., 2016).

3. Results

3.1 Exposures and burden of disease

SO2 exposures across the study area vary considerably. Figure 2A maps annual average 

concentrations for the base case (S0). Levels are highest in southwest Detroit where several 

major sources are clustered (Figure 1). The 4th highest 1-hour daily maximum concentration 

occurs in this area, but areas to the north also experience high concentrations (Figure 2B). 

(The 4th highest 1-hour daily max concentrations shown are not necessarily 

contemporaneous.) Table 2 summarizes the distribution of hourly SO2 concentrations at 

receptors, daily mean SO2 concentrations at the census block level, and daily 1-hour 

maximum SO2 concentrations at the Southwest High School (SWHS) monitoring site. 

Comparisons of predicted and observed daily mean SO2 concentrations at SWHS, which 

recorded the highest SO2 levels in the area, showed no significant differences (K-S test, p > 
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0.05, Supplemental Figure 3), suggesting that point source emissions account for SO2 

concentrations in the area and that the dispersion model replicates the observed distribution.

The burden of disease from SO2 falls mostly among children. For the base case, health 

impacts include 7 hospitalizations for asthma, 95 ED visits for asthma, and over 6000 days 

with asthma-related respiratory symptoms (i.e., exacerbations; Supplemental Table 3). This 

is equivalent to 7 DALYs and $2.7 million in monetized impacts each year, most (>90%) of 

which is from asthma-related respiratory symptom-days. Asthma exacerbations increase 4-

fold using a Detroit-specific CR coefficient (Batterman et al., manuscript in preparation), 

reflecting the potentially higher vulnerability of Detroit children to SO2 exposures. These 

estimates only reflect health impacts from SO2 exposures and do not include health impacts 

that would result from the formation of secondary aerosols (e.g., PM2.5) from SO2, which 

may be substantially exceed the impacts from SO2 alone (US EPA, 2010a).

3.2 Health impacts by sources

Table 3 lists SO2 emissions, attributable health impacts as DALYs/year, and annual health 

impacts per 100 tons of SO2 emitted by the major sources, information which guides the 

emissions and health-oriented ranking strategies (S2 and S3). (For comparison, the table 

includes DTE Monroe, which was excluded from the control strategies as its location is 

outside the non-attainment area.) The 125 minor sources emit 8% of the SO2 in the 

inventory and cause 11% of the health burden. Importantly, rankings of major sources by 

emissions, DALYs and health impacts differ, e.g., the highest ranked source for total 

emissions (excluding DTE Monroe) is DTE Trenton Channel; the top source for DALYs is 

US Steel, and the top source for DALYs per 100 tons SO2 is Carmeuse Lime. Although SO2 

emissions from Carmeuse Lime, Detroit Industrial Generation and Severstal/AK Steel are 

relatively small (< 800 tons/year each), their proximity to residential neighborhoods and low 

stack heights increase SO2 exposure per ton of emissions, thus increasing the burden 

attributable to these facilities.

3.3 Comparison of SO2 control strategies

3.3.1 Fourth highest 1-hour daily maximum SO2 concentration—The “peak” (4th 

highest 1-hour daily maximum) SO2 concentrations for six control strategies are shown in 

Table 4. For the base case (0% reduction), the peak (79.5 ppb) exceeds the NAAQS 

concentration (75 ppb). At each SO2 reduction target, the “largest emissions first” (S2) 

approach gives the highest peak concentration; the “receptor-concentration optimization (S4) 

gives the lowest. With full (90%) reductions, the peak concentration falls to 56.2 ppb. 

Despite the high level of SO2 emission reductions, peak concentrations do not drop further 

because emissions from excluded facilities (DTE Monroe and the minor facilities), which 

emit nearly 60% of the total SO2 emissions in the area combined, remain unchanged from 

baseline.

3.3.2 Total attributable health burden—Trade-offs between health improvements 

(DALYs/year) and inequality (AI) are depicted in Figure 3 for each control strategy type. 

(Comparable figures showing the tradeoffs between health impacts and the CI are provided 

in the Supplemental Materials.) The health burden decreases from 7.0 DALYs/year for the 
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base case to 2.6 DALYs/year for 90% emission reductions (Table 5). The health burden falls 

less than 90% since emissions at DTE Monroe and the minor point sources do not change. 

While any emission reduction lowers the health burden, some strategies are more effective. 

The uniform reductions strategy (S1) provides nearly linear improvements, as expected. For 

low to moderate emissions reductions (15 – 45%), reducing emissions at sources with the 

highest impacts per ton of emissions (S3) yields greater health benefits than the uniform 

percentage (S1) and the minimal concentration (S4) strategies. Although advantages 

diminish beyond 60% reductions, strategy S3 still outperforms S1 and S2 due to its 

emphasis on reducing emissions at sources near large populations, i.e., sources with the 

highest health impact per unit emissions (Table 3). The concentration optimization strategy 

(S4) outperforms the uniform reductions approach for smaller reduction targets (15-45%), 

but benefits diminish at higher reduction goals. Results for health ranking (S3) and health 

optimization (S5) strategies are nearly identical for 30, 45, and 60% reduction goals, and the 

simpler health-based ranking approach (S3) achieves near-optimal results.

3.3.3 Inequality of health impacts—Both inequality metrics suggest an unfair 

distribution in SO2-related health impacts (AI for the base case = 0.136). The CI indicates 

that the SO2-related health burden tends to disproportionately affect areas with high 

proportions of residents who are Hispanic or Latino, have less than a high school diploma, 

or are foreign-born (Table 5 shows CI metrics for selected reduction targets and blocks 

ranked by the percentage of Hispanic/Latino residents, persons of color, and median income; 

Supplemental Table 4 provides metrics for the full set of reduction targets and vulnerability 

characteristics). In the study area, these variables are moderately correlated (Pearson R: 0.35 

– 0.47), and census blocks with the highest proportions of Hispanic or Latino residents 

coincide with the highest SO2 exposures (southwest Detroit, Figure 2A, Supplemental 

Figure 2).

All of the strategies with one exception reduce the inequality of adverse health impact risks 

associated with SO2 (Figure 3, Table 5, Supplemental Table 4). While reducing the overall 

health burden, the largest-emissions-first approach (S2) strategy increased inequality, a result 

of increasing the relative importance of SO2 “hotspots” produced by smaller facilities. The 

lowest inequality occurs for the health impact optimization (S5) with a 75% reduction in 

total emissions (AI = 0.116, DALYs per year = 2.58). Increasing removals to 90% slightly 

lowers impacts (DALYs per year = 2.57) though inequality slightly increases (AI = 0.117) 

since reductions at all sources tends to increase inequality (as discussed above). Possibly the 

most striking result in Figure 3, however, is the very large improvement in inequality and 

DALYs yielded by a very modest (15%) reduction of SO2 emissions with the health impact 

optimization (S5) strategy due to the high benefits per ton removed for targeted sources 

(Table 3); this strategy reduced emissions by 90% at AK Steel, Marathon, Dearborn 

Industrial Generation, Carmeuse Lime and US Steel, and by 60% at EES Coke, while 

emissions at DTE Trenton Channel and DTE River Rouge were unchanged.

The distribution of benefits from SO2 reductions across social groups is strategy-dependent. 

The largest changes in the CI at intermediate SO2 reduction targets occur for the largest-

health-impacts-first (S3) and the health optimization (S5) strategies. These strategies benefit 

Hispanic/Latino, low educational attainment, and foreign-born populations; this is important 
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because these groups bear heavier burdens in the base case (Table 5, Supplemental Table 4, 

Supplemental Figure 4). The “percentage of the population of persons of color” variable 

does not indicate a disproportionately high health burden from SO2 because most (>90%) 

individuals in the study area identify as non-Hispanic Black or Hispanic/Latino (US Census 

Bureau, 2015); aggregating these groups using a single variable ignores important 

demographic patterns across the city.

3.4 SIP versus optimized strategies

Since maximum allowable emissions were approximately twice that of the actual emissions, 

the SIP maximum allowable case (S6), SIP (S7), and optimized (S8 and S9) strategies gave 

considerably higher concentrations and exposures (Supplemental Table 5) than those using 

actual emissions (Table 2, Table 4). The peak concentration (111 ppb for strategy S7) differs 

from the SIP (74 ppb; MDEQ, 2016, p. 34) due to differences in receptor grids, years 

modeled, and the treatment of background. (A more detailed “hotspot” analysis, as 

performed by MDEQ, would be needed to ensure the alternative strategies achieve the 

NAAQS and comply with US EPA criteria.) Like strategies based on actual emissions, 

reducing the maximum allowable emissions yields health benefits, and all strategies based 

on maximum allowable emissions reduce inequalities (Figure 4). The SIP control (S7) and 

the concentration optimization (S8) strategies performed similarly; the health optimization 

alternative (S9) outperformed both of these strategies with respect to exposures, health 

benefits and inequality. Note that strategies S7, S8 and S9 reduced emissions by the same 

amount (26,418 tons per year). Based on the CI, the health-based approach is particularly 

beneficial for disproportionately impacted populations, e.g., areas with high proportions of 

Hispanic or Latino residents (Supplemental Table 6, Supplemental Figure 5).

4. Discussion

Health-based AQM strategies can yield large decreases in health burdens and the inequality 

of health risks, performing better than current strategies that prioritize compliance with the 

NAAQS. In Detroit, reducing emissions at sources with the largest health impacts (S3, S5) 

achieved the greatest benefits in attributable health burden and inequality. These sources 

tend to be smaller and closer to densely populated areas. In contrast, strategies focusing on 

the largest sources (S2) only modestly reduced health burdens and increased inequality. 

These sources mostly have tall stacks, are far from populated areas, and their resulting 

concentrations tend to be low and well dispersed. While emission reductions at these large 

sources lessen the health burden across broad areas, it increases the relative importance of 

smaller sources, thus increasing inequality. The inefficiency of the largest-emissions-first 

strategy in terms of health benefits and its tendency to increase inequality is an important 

result that has not been emphasized elsewhere, in part because earlier studies primarily 

focused on total health risks rather than pollutant-attributable risks (e.g., Levy et al., 2007).

4.1 Benefits of using quantitative HIA analyses in the air quality management process

The development of a control strategy presents a prime opportunity for reducing health 

burdens and disparities, which is not taken advantage of in the current compliance-oriented 

approach. For example, the Detroit SO2 SIP submission specifies emissions reductions at 
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three facilities and stack height increases at another (MDEQ, 2016), an approach derived 

following US EPA guidelines, negotiations with affected facilities, and RACT analyses. 

Unfortunately, this plan targets sources that have relatively low health impacts per ton of 

SO2 emitted (Table 3), and it will not alleviate disparities associated with SO2 exposures. 

This is supported by the “actual emissions” strategies (S1-S5), which better reflect current 

exposures than the SIP maximum allowable case (S6). While results in Figures 3 and 4 are 

not directly comparable (these figures are based on “actual” and “maximum allowable 

emissions,” respectively), they each show that health-based strategies can yield bigger 

improvements in public health and health inequalities.

The use of the maximum allowable emissions is currently required for air quality modeling 

demonstrations of NAAQS attainment (US EPA, 2005). For the nine major SO2 sources in 

Detroit, these maxima were up to 4 times higher than actual emissions, depending on the 

source. Thus, the use of maximum emissions greatly over-estimates health burdens and 

might not target the sources that actually cause the highest concentration, health or 

inequality impacts. The NAAQS must be attained under all circumstance, so this rule is 

justifiable; however, a second analysis using actual emissions would improve the realism of 

exposure and health analyses and potentially result in healthier and fairer outcomes. 

Alternatively, the difference between actual and maximum allowable emissions could be 

reduced, perhaps to no more than a factor of 1.5, and then a single analysis could 

simultaneously demonstrate that a proposed SIP strategy attains the NAAQS, maximizes 

health benefits, and minimizes inequality.

Multipollutant AQM approaches also can increase health and inequality benefits. An 

integrated and least-cost approach for PM2.5 and ozone in Detroit using “population-oriented 

reductions” was predicted to attain standards, lower total health impacts, and reduce 

inequality compared to strategies that addressed pollutants separately (Fann et al., 2011; 

Wesson et al., 2010). While we focused on a single pollutant, analyses of other pollutants 

could inform the evaluation and development of control alternatives.

4.2 Evolving towards more comprehensive and equitable air quality management

Reorienting AQM from standards compliance to consideration of site-specific health and 

inequality concerns is, in part, motivated by environmental justice and cumulative impact 

concerns. U.S. EPA is becoming increasingly concerned with the “fair treatment” of all 

social groups when implementing environmental policies, and this extends to the distribution 

of health benefits as a result of policy actions (US EPA, 2016b). The agency has expressed a 

preference for quantitative EJ analyses that complement other analyses in the rule making 

process (US EPA, 2016c). Several state and local regulators are also formalizing EJ 

activities, including permitting, compliance, enforcement, and monitoring (e.g., MPCA, 

2015). These goals can be supported using the CI and other metrics. Our use of the SO2-

attributable burden in inequality assessments helps identify whether the benefits of emission 

control strategies are fairly distributed, and it highlights how some population groups 

(Hispanic and Latino populations) receive fewer benefits under some of the strategies. 

Potentially, HIA tools and inequality metrics can show the rate of progress towards 

eliminating inequality, a potentially important EJ metric.
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Quantitative HIA methods can enhance cumulative impact analyses, few of which have 

quantified health risks or impacts attributable to individual environmental hazards (Cushing 

et al., 2015). Most of these analyses have focused on assessing exposures to environmental 

hazards and identifying where minority or low income populations are affected, (e.g., Sadd 

et al., 2011; Su et al., 2009, 2012). As shown here and elsewhere, health burdens depend on 

many factors, e.g., exposures from an industrial facility are spatially varying, depending on 

distance, emissions, meteorology, population size and vulnerability. Variation at the intra-

urban scale can be large, e.g., risks in a small fenceline community near an industrial 

complex in Texas were lower than in the rest of the city due to prevailing winds (Prochaska 

et al., 2014). Thus, hazard scores considering only the presence or proximity of hazards may 

inadequately represent the exposure potential and likely impacts.

Health and inequality metrics could strengthen accountability research, which examines the 

outcomes of regulatory and other policy decisions (Bell et al., 2011). For example, changes 

in air pollutant levels improved lung function among children living in Los Angeles, 

California (Gilliland et al., 2017); health and inequality metrics could show whether these 

benefits are equitably and effectively distributed.

4.3 Considerations for quantitative HIAs

Burden of disease and inequality results can be affected by the location of air pollution 

sources, dispersion characteristics, the location of vulnerable and susceptible populations, 

administrative boundaries, and the spatial resolution of the analysis. As examples, estimating 

the base case health impacts for SO2 emissions estimated at the ZIP code level in Detroit 

tremendously smooths gradients in exposure and lowers AI values; including areas with a 

high degree of social advantage (e.g., non-Hispanic white populations) or excluding 

potentially vulnerable populations can change CI values and possibly the groups identified 

as disproportionately harmed (Supplemental Table 7). Sensitivity analyses that vary spatial 

scales and study boundaries can help evaluate the robustness of HIA findings.

Importantly, no standards or thresholds have been established for inequality assessments, 

and small changes in inequality metrics may not be meaningful. In general, alternatives that 

decrease inequality relative to the base case will be favored provided that conditions are not 

worsened for the better-off groups. In Detroit, changes in inequality resulted from decreases 

in health burdens since emissions were not allowed to increase. In other applications, health 

burdens may increase, and thus improvements in inequality must be coupled with an 

analysis showing how benefits are generated to ensure that no population subgroup is 

adversely impacted.

We did not consider costs or practicalities of pollution abatement. Costs will vary by source 

type, size, and other facility-specific factors. Typically, smaller facilities incur greater costs 

per ton removed due to unavoidable fixed costs, e.g., capital and operational costs (Becker, 

2005), and marginal costs usually increase at higher removal rates (Hartman et al., 1997). 

Based on abatement costs expressed as dollars per ton of pollutant removed, controls at large 

facilities may appear as more cost-effective, while reductions at smaller facilities may seem 

less economical. However, this accounting is incomplete: the lower per ton control costs at 

large facilities might yield lower health benefits, while the higher per ton costs at smaller 
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facilities might be offset by greater health benefits. Many practical issues affect such 

assessments, e.g., the availability and ease of installing SO2 controls. As noted in the SIP, 

installing end-of-pipe controls at some sources could require substantial retrofitting because 

these facilities predate the requirement for SO2 removal technologies (MDEQ, 2016).

4.4 Limitations

The HIA applications have important limitations. First, incidence rates in Detroit were 

available at county to ZIP code scales, which limits the ability to capture spatial variability. 

Second, information on individual-level exposures was not used, which can bias health 

impact estimates when people live in one area and work or attend school in other areas 

(Baccini et al., 2015; Tchepel and Dias, 2011). Third, health impacts from secondary 

pollutants (e.g., sulfate particles formed from SO2) were not considered. Impacts (especially 

mortality) from secondary PM2.5 can far exceed those of SO2 (US EPA, 2010a), however, 

secondary pollutant formation at the urban scale, which typically occurs at a regional scale 

and results in relatively homogeneous PM2.5 concentrations at the intra-urban scale (Turner 

and Allen, 2008), may be modest. Fourth, sensitivity and uncertainty analyses were limited. 

Potentially important uncertainties include baseline incidence rates, dispersion modeling 

results, and the CRs (Mesa-Frias et al., 2013; O’Connell and Hurley, 2009). Uncertainty in 

the CR will likely have the largest influence on health impact estimates (Chart-asa and 

Gibson, 2015).

The inequality assessment is limited by the ability to identify all vulnerable or susceptible 

populations in the area. The American Community Survey (ACS) data allows some analysis 

by race or Hispanic/Latino ethnicity. In Detroit, 90% of the population identifies as 

Hispanic/Latino or non-Hispanic Black (US Census Bureau, 2015). However, our study area 

also included the city of Dearborn, which is approximately 30% Arab or Arab-American (de 

la Cruz and Brittingham, 2003), ethnicity data not yet routinely collected by the US Census 

Bureau. Many Arab and Arab American residents experience high exposures to social 

stressors, e.g., discrimination (Padela and Heisler, 2010; Samari, 2016) and therefore would 

be an important subpopulation to include in EJ and CI analyses.

Another limitation of this and other urban-scale assessments is their site-specific nature. The 

trade-offs between emissions reduction, health burden and inequality demonstrated for 

Detroit are site- and scenario-specific, driven by the unique combination of high degrees of 

population vulnerability and susceptibility, the proximity of several large sources, the 

spatially variable pollutant concentrations, and other factors. We expect that results would be 

differ for urban areas where sources are more distant or for analyses of regional pollutant 

such as ozone. Still, our findings appear broadly applicable. For example, a national 

assessment of power plants showed that reducing emissions at sources with the highest 

health impacts per ton of pollutant emitted maximizes improvements in health and inequality 

(Levy et al., 2007). Trends similar to those determined for Detroit are expected in other 

urban areas that have high concentrations of spatially varying pollutants, e.g., SO2, and 

industry and residential areas interspersed.
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5. Conclusions

Air quality management (AQM) and control strategies can be improved by incorporating 

health and inequality metrics. The combination of spatially variable exposures and known 

inequalities in susceptibility and vulnerability motivates the use of spatially-resolved HIAs 

to assess health inequality as well as the health burden. In Detroit, MI, a designated SO2 

non-attainment area, SO2 continues to have a substantial impact on the health of the 

population, particularly among children and Hispanic or Latino populations. AQM strategies 

that focused on emission sources with the highest health impacts per ton of pollutant emitted 

provided the greatest health benefit per ton of pollutant reduced; these strategies also 

reduced the inequality of health risks. In contrast, strategies targeting the larger emitters 

increased inequalities and sometimes provided minimal health benefits. Assessments that 

incorporate HIA techniques and inequality metrics are feasible and allow AQM to move 

beyond compliance with ambient standards towards strategies that promote health and 

equity.
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Figure 1. 
Study area, boundaries of the SO2 non-attainment area, and locations of major point sources 

of SO2.
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Figure 2. 
Annual average (A) and 4th highest 1-hour daily maximum (B) SO2 concentrations (ppb) for 

the base case (S0). Based on 5-year average emissions of SO2, 2012 meteorology, and all 

point sources. The solid blue line shows the HIA study area; the dashed green line shows the 

SO2 non-attainment area.
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Figure 3. 
Attributable health burden (DALYs/year) versus Atkinson inequality index for each emission 

control alternative. Lines connect alternatives with the same SO2 emissions reduction target 

(15 to 90%). AI inequality aversion parameter set to 0.75.
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Figure 4. 
Attributable health burden (DALYs/year) versus Atkinson inequality Index (inequality 

aversion parameter = 0.75) for the SIP maximum allowable (S6), the SIP control (S7), and 

two optimized (S8 and S9) strategies.
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Table 1

Descriptions of the SO2 reduction strategies.

ID Name Emphasis Description

S0 Base case Base case of actual emissions based on averaged emissions reported in 
MAERS, 2010 to 2014

S1 Uniform percentage Emissions Applies uniform reductions across all major source facilities to meet 
tonnage reduction goals

S2 Largest emissions first Emissions First ranks facilities by total tons emitted and then applies controls to largest 
facilities first

S3 Health impact ranking Health Applies controls to facilities that have the largest health impacts per ton of 
SO2 emitted first

S4 Receptor concentration optimization Concentrations Optimizes emissions at each facility to minimize receptor concentrations 
across the study domain

S5 Health impact optimization Health Optimizes emissions at each facility to minimize total health impacts across 
the study area

S6 SIP “maximum allowable” case Base case of maximum allowable emissions used to develop the SIP control 
strategy. Used as comparison case for S7-S9.

S7 SIP control strategy Emissions Emissions reductions specified by the MDEQ SIP for SO2 non-attainment. 
Includes the elevated stack at Carmeuse Lime.

S8 SIP receptor concentration optimization Concentrations Optimizes maximum allowable emissions at each facility to minimize 
receptor concentrations across the study domain

S9 SIP health impact optimization Health Optimizes maximum allowable emissions at each facility to minimize total 
health impacts across the study area
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